• L-Alanine
  • L-Alanine
  • L-Alanine
  • L-Alanine
  • L-Alanine
  • L-Alanine

L-Alanine

CAS No.: 56-41-7
Color: White
Appearance: Powder
Transport Package: Paper
Specification: large
Trademark: china
Samples:
US$ 7/Piece 1 Piece(Min.Order)
| Request Sample
Gold Member Since 2023

Suppliers with verified business licenses

Beijing, China
to see all verified strength labels (12)

Basic Info.

Model NO.
E1422
Origin
China
HS Code
2930400000
Production Capacity
5000kg/Year

Product Description

Ab initio B3LYP/6-31G* optimized geometries, vibrational frequencies, and absorption intensities have been calculated for the l-alanine zwitterion (ALAZW) structures stabilized by four neighboring water molecules. The ALAZW structures were stabilized by the addition of four neighboring water molecules because at the B3LYP/6-31G* level of theory the ALAZW is not stable in the absence of the water molecules and will be converted to the nonionized species. The ALAZW was not stable at this level of theory within the Onsager continuum model using the recommended cavity radius obtained from the solute volume calculations. Geometry optimization of the ALAZW in the presence of the explicit water molecules resulted in different optimized structures for the amino acid itself. The distributed origin gauge atomic axial tensors and the electric dipole−electric dipole polarizability derivatives calculated at the RHF level of theory were combined with the B3LYP normal modes, frequencies, and atomic polar tensors to calculate the vibrational absorption, the vibrational circular dichroism, and polarized Raman scattering intensities for the ALAZW structures. These calculated vibrational spectra of the solute were found to be very sensitive to the relative arrangement of the neighboring water molecules.
 

Ab initio B3LYP/6-31G* optimized geometries, vibrational frequencies, and absorption intensities have been calculated for the l-alanine zwitterion (ALAZW) structures stabilized by four neighboring water molecules. The ALAZW structures were stabilized by the addition of four neighboring water molecules because at the B3LYP/6-31G* level of theory the ALAZW is not stable in the absence of the water molecules and will be converted to the nonionized species. The ALAZW was not stable at this level of theory within the Onsager continuum model using the recommended cavity radius obtained from the solute volume calculations. Geometry optimization of the ALAZW in the presence of the explicit water molecules resulted in different optimized structures for the amino acid itself. The distributed origin gauge atomic axial tensors and the electric dipole−electric dipole polarizability derivatives calculated at the RHF level of theory were combined with the B3LYP normal modes, frequencies, and atomic polar tensors to calculate the vibrational absorption, the vibrational circular dichroism, and polarized Raman scattering intensities for the ALAZW structures. These calculated vibrational spectra of the solute were found to be very sensitive to the relative arrangement of the neighboring water molecules.

L-AlanineL-AlanineL-AlanineL-AlanineL-AlanineL-Alanine


Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now